
						
		

Two	Stage	Least	Squares	Using	Excel	
	

With	an	Application	to	the	Gun	Debate	
	
	

Background	
	
During	a	career	of	economic	research	using	sophisticated	econometric	and	
statistical	software,	I	rarely	had	to	know	how	to	do	the	analysis	manually:	the	
software	always	did	it	for	me.	But,	now	retired,	my	access	to	that	software	is	gone	
and	I	confronted	the	tedious	task	of	doing	some	research	using	Microsoft	Excel.	That	
research	involved	estimation	of	a	structural	model	using	Two	Stage	Least	Squares	
(TSLS).	Excel	worked	well	for	estimation	of	the	basic	parameters	of	the	model,	but	it	
provided	no	"canned"	method	for	correctly	estimating	the	variances	of	parameter	
estimates	so	that	statistical	inferences	could	be	made.	
	
This	"note"	shows	just	how	to	use	Excel—or	any	spreadsheet	software	capable	of	
matrix	manipulations—to	estimate	TSLS.	It	ends	with	an	application	to	the	question,	
"Are	homicides	and	suicides	in	the	U.	S.	causally	related	to	the	number	of	guns?"	In	
that	portion	we	show	the	Excel	spreadsheets	used	to	make	correct	calculations	of	
the	variance-covariance	matrix	of	a	structural	equation's	parameters,	and	we	
compare	the	corrected	t-statistics	with	those	generated	by	an	OLS	estimation	of	the	
equation.		
		
	

Structural	Model	Estimation	by	Two-Stage	Least	Squares	
	
Notation:	a	"hat"	over	a	vector	or	matrix	indicates	"predicted"	value	from	an	OLS		
																				regression	
																				a		"cup"	(inverted	hat)	indicates	a	residual	from	an	OLS	regression	
	
	
The	Model	
	
In	the	general	structural	equations	model	there	are	M	structural	equations	in	which	
J	of	the	regressors	are	endogenous	variables:	variables	that	are	correlated	with	the	
error	term	(a	change	in	u	with	other	variables	constant	changes	y	and	that	feeds	
back	onto	z).		Thus,	causation	works	both	ways	in	a	structural	model.	
	
	
(1)	 														M	structural	equations,	each	of	the	form	

	
									yi	=		Xßi		+			Zøi		+	ui									i	=1,	.	.	.,	M	
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where	there	are	N	observations	and		
	
							yi			is	an	N	x	1	vector	of	observations	on	the	kth	independent	variable	
	
							𝐗		is	an	N	x	K	matrix	of		exogenous	variables	
	
						𝜷𝒊	is	a	K	x	1		vector	of	coefficients	to	be	estimated	
	
							Z	is	an	N	x	J	matrix	of	“included”	endogenous	variable	
	
			øi	is	a	J	x	1		vector	of	coefficients	to	be	estimated	
	
					ui	is	a	N	x	1	matrix	of	random	errors,		u	~	𝑁(0,	s2I)	
	
There	are	also	J	"instrumental	equations,"	each	describing	the	relationship	of	one	of	
the	J	endogenous	regressors	to	a	set	of	exogenous	regressors.			
	
									
																																
(2)	
	
																																
	
	
					W	is	a	N	x	P	matrix	of	observations	on	P	“	instrumental	variables	
	
					𝝅𝒋			is	a	P	x	1	vector	of	coefficients	to	be	estimated	
	
					vj	is	a	N	x	1		vector	of	random	errors,		v	~	𝑁(0,	s()I)	
	
Note:	the	coefficient	vectors	can	be	different	for	each	instrumental	or	structural	
equation	by	setting	some	elements	of		𝜷𝒌	and	𝝅𝒋	to	zero.					
	
The	First-Stage	Regression	
										
The	first	stage	in	TSLS	estimation	uses	Ordinary	Least	Squares	(OLS)	to	create	
"instruments"	for	each	endogenous	regressor		This	requires	choosing	exogenous	
variables	that	are	correlated	with	each	of	the	J	endogenous	regressors	but	have	no	
feedback	to	those	endogenous	regressors.		Suppose	you	have	P	exogenous	variables.	
	
	 The	exogenous	variables	are	formed	into	an	N	x	P	matrix	(W),	where	P	is	the	
number	of	exogenous	variables	and	N	is	the	number	of	observations.		Then	the	

													J	instrumental	equations,	each	of	the	form	
	
																														zj	=		W𝝅𝒋			+		vj							j	=	1,	.	.	.,	J																	
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following	steps	are	applied	to	estimate	each	of	the	J	equations	explaining	each	
"instrument	variable"	(𝑧,).	
	
							•			Estimate,	using	OLS,	each	instrumental	equation	𝑧, 	=	W𝜋, +	𝑣,			j	=	1.	2,	.	.	.	,	J	
	
																			The	estimators	are	the	standard	OLS	estimators.	Thus,	for	each		
																				instrumental	equation	we	have	
					
																										𝜋0,	=	(W'W)-1W'𝑧,—	the	coefficient	estimator	
	
																											Ω2	=			𝑠̂()(W'W)-1	—	the	variance-covariance	matrix	of	coefficients	
	
																											𝑠̂()	=		

5
678

S𝑣0,) 		—	the	sample	variance	of	the	estimated	error	term	𝑣,		
	
								•				Save	the	N	x	1	vectors	of	fitted	and	residual	values	of	𝑧, 	(denoted		z0:	and	𝑧̌:	
														respectively)	and	form	them	into	two	N	x	J	matrices		Z= 	and	Ž.	
		
The	Second	Stage	
	
																														•					The	ith	structural	equation	in	(1)	can	be	written	as:							
	
																																																										𝑦A 	=		𝑋𝛽A		+		𝑍E𝜃A 	+		€A										
																								
																																					with		error	term		€A	=	𝑢A +		Ž𝜃A 										
	

Note:		X	is	K	x	N;	Z,	𝑍E	and	Ž	are	M	x	N;	𝜃A 	is	M	x1;	and	𝛽A	is	K	x	1	
	
																																					Each	structural	equation	can	be	rewritten	as		
	
																											𝑦A 	=		𝑄=𝛾A		+		€A			where	𝑄= 		=					X			Z= 					and		𝛾A		=				bi				
																																																																																																																						qi	
	
																	Note:	𝑄= 	is		N	x	(K	+	M);		𝛾A	is	(K+M)	x	1;	bi		is	a	Kx1	vector	of	coefficients	of	
exogenous	regressors;	and	qi		is	an	Mx1	vector	of	coefficients	of	endogenous	regressors	
	
																													•				Estimate	each	structural	equation	using	OLS	to	derive		
	
																																									Estimated	OLS	coefficients:				𝛾0	=	(𝑄= '𝑄=)-1Q'𝑦A 				
	
																																									OLS	Standard	Error	of	Estimate:			𝑠̂€)	=	

5
67(LM8)

S€22					
	
																																									OLS	variance-covariance	matrix:								Ω	2 	=		𝑠̂€)(𝑄= '𝑄=)-1	

																																																																																																	where	𝑠̂€)	=	
5

67(LM8)
S€22			



	 4	

	
So	far	so	good:	the	estimated	OLS	coefficients	(𝛾0)	need	no	further	adjustments—
they	are	asymptotically	unbiased,	meaning	that	as	the	sample	size	grows	the	
estimates		𝛾0A 	approaches	the	population	parameters	𝛾A	.		
	
But	the	OLS	estimate	of	the	variance-covariance	matrix	is	incorrect	for	statistical	
inference.		Recall	that	the	errors	in	the	second-stage	regressions	(€)	are	calculated	
as	
																																																											€A	=	𝑢A +		Ž𝜃A 	
				
Thus,	because	the	second-stage	regression	uses	the	fitted	values	for	each	
endogenous	regressor	rather	than	the	actual	values,	the	effect	of	the	residuals	in	Ž	
are	compounded	into	the	error	term	for	each	structural	equation.		
	
Correcting	the	Variance-Covariance	Matrix	
	
The	"Correct"	Variance-Covariance	Matrix	
	
The	OLS	estimation	of	the	coefficient	vector	𝛾0A 	using	the	fitted	values	of	instrument	
variables	is			
																																																						𝛾0		=	(𝑄= '𝑄=)-1𝑄= 'y			
	
The	difference	between	the	coefficients	and	their	population	values	is		
	
																																									(𝛾0		-		g)	=	(𝑄= '𝑄=)-1Q'(u	+	Žq=)	
			
	The	correct	variance-covariance	matrix	is			
	
																																														Ω2	=	E((𝛾0		-		g)(𝛾0		-		g)'			
	
Thus,																Ω2	=	𝜎P)(𝑄= '𝑄=)-1	+	(𝑄= '𝑄=)-1𝑄= '[Ž(q=q=')Ž']𝑄=(𝑄= '𝑄=)-1					
					
Note:	the	first	part	of	𝛺= 	is	the	standard	OLS	estimator	for	the	variance-covariance		

matrix.		The	second	part	is	the	adjustment	necessary	to	derive	the	variance-
covariance	matrix	for	the	second-stage	regression.	

	
There	are	two	steps	in	making	the	adjustments:	
	
																	•			Compute	𝑠̂P),	the	correct	estimator	for	𝜎P).			
	
																	•			Compute	the	correct	elements	in	the	Ω2	matrix		
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Find	the	Correct	Estimator	for	𝜎P),	i.e.	(𝑠̂P))	
	
The	first	step	is	to	find	the	correct	estimator	for		𝜎P).		Recall	that	the	new	structural		
equation	error	term	is		€2A	=		𝑢0A +		Žθ=A ,	so		𝑢0A = €2A −	Žθ=Ais	the	implicit	error	term	in	
the	first-stage	regression	if	the	actual	Z	had	been	used	instead	of	the	fitted	Z= .		Thus,	
the	vector		𝑢0A	can	be	calculated	using	the	estimates	from	the	second	stage	OLS	error	
vector	(€A),	the	estimated	instrumental	coefficients	(q=),	and	the	matrix	of	residuals	
in	the	instrumental	variable	equations	(Ž).	In	short	
	
																																											•		Compute		𝑢0 		=	€2 −	Žq=				
																																												
																																											•		Calculate		𝑠̂P)	=	

5
67(LM8)

S𝑢0A)				
	
Compute	the	Elements	in	Ω2		
	
Above	we've	seen	that			
				
																										Ω2		=		𝑠̂P)(𝑄= '𝑄=)-1	+		(𝑄= '𝑄=)-1𝑄= '[Ž(𝜃=𝜃=′))Ž']𝑄=′𝑄2 	(𝑄= '𝑄= 	)-1	
	
To	compute	the	elements	you	need	(𝑄= 	'𝑄= 	)-1,	(𝑄= '𝑄=)-1𝑄= ',		the	first-stage	residual	
matrix	Ž,	and	the	second	stage	coefficient	estimates	θ= .		These	can	be	formed	from	
the	available	data	and	estimates.	
	
Though	I	found	it	a	tedious	task,	the	elements	of	Ω2	can	be	calculated		
using	Excel	(see	Appendix)	
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A	General	Solution:	
Multiple	Exogenous	and	Endogenous	Regressors	

		
Note	that	the	intercept	("constant	term")	is	designated	1	(a	an	N	x	1	vector	of	1's)	
and	is	classed	as	an	exogenous	regressor.	The	simplest	structural	model	is	a	single	
equation	without	an	intercept	and	with	only	one	endogenous	regressor		
(i.e.,	K	=	0,	M	=	1).	Here	we	describe	the	most	general	case.	
	
The	Data	
	
Let	X	be	a	N	x	K	matrix	of	exogenous	regressors									
							Z		be	a	N	x	M	matrix	of	endogenous	regressors	
												Z= 		be	a	N	x	M	matrix	of	fitted	values	from	first-stage	regression	
												ZW 	be	a	N	x	M	matrix	of	residual	values	from	first	stage	regressions	
and	
												𝑄= 	=	[X			Z=]	be	the	N	x	(K+M)	matrix	of	all	second-stage	regressors		
			
The	variance-covariance	matrix	for	the	second-stage	regression	coefficients	is	
	
																							W	=		𝜎P)(𝑄= '𝑄=)-1		+		(𝑄= '𝑄=)-1	𝑄=′	[(Z= '	Ž)(θθ′)(ŽZ=')]𝑄(𝑄= '𝑄=)-1	
	
		Let		A	=	(𝑄= '𝑄=)-1(K+M)x(K+M)				B	=	[𝑍E'	Ž]MxM					and			θ= '	=		(	θ=5			θ=)			.	.	.	.			θ=X	)1xM	
	
		so	we	can	write	W	=		𝜎P)A-1		+		A-1B[θθ′]B′A′-1	
	
where	
			
			A		=						𝑄=5

]𝑄=	5				𝑄=5
]𝑄=)				.		.			𝑄=5

]𝑄=L				
																𝑄=)

]𝑄=	5				𝑄=)
]𝑄=)				.		.			𝑄=)

]𝑄=L			
																					.													.												.										.							
																𝑄=L

]𝑄=	5			𝑄=L
]𝑄=)			.		.		𝑄=L

]𝑄=L	
								
	
				B	=						𝑍E5

]Ž	5					𝑍E5
]Ž)		.		.			𝑍E5

]Ž	5L						=								0											𝑍E5
]Ž)			.		.		.	𝑍E5

]Ž	5L							
																𝑍E)

]Ž	5					𝑍E)
]Ž)		.		.			𝑍E)

]Ž	5L														𝑍E)
]Ž	5									0						.		.		.		𝑍E)

]Ž	5L 	
																				.															.										.								.																												.															.										.								.																													
															𝑍EL

]Ž	5				𝑍EL
]Ž)		.			.		𝑍EL

]Ž	5L												𝑍EL
]Ž	5				𝑍EL

]Ž)		.			.		.				0														
	
														
	𝜃=𝜃='		=						𝜃5)										𝜃5𝜃)				.		.				𝜃5𝜃X					
																	𝜃)𝜃5									𝜃))						.		.						𝜃)	
																𝜃)𝜃5									𝜃))						.		.					𝜃)𝜃X	
																𝜃X𝜃5							𝜃X𝜃)													𝜃L) 	
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Finding	the	variance-covariance	Matrix	
	
Recall	that	the	variance-covariance	matrix	of	the	estimators	q=	is		
		
																										Ω2	=		=	𝜎P)(Q'Q)-1	+	(Q'Q)-1Q'[Ž(𝜃=𝜃=])Ž']Q(Q'Q)-1				

	
		A	central	matrix	in	the	TSLS	estimation	is			
	
									𝑄= 	=		[X				𝐙=]		from	which			
	
					𝑄= '𝑄= 	=	[X				𝐙=]	[X				𝐙=]'	=			X'X				X'𝐙= 	
																																																			𝐙=′X				Z'𝐙= 	
	
Block	Inversion,	a	property	of	matrix	algebra,	says	that	
	
																A							B			-1																		(A	-	BD-1C)-1																			-(A	-	BD-1C)-1BD-1		
																																							=					
																C							D																					-D-1C(A	-	BD-1C)-1					D-1C(A	-	BD-1C)-1	BD-1	
							
so	(Q'Q)-1			can	be	written	as		
																												
	(Q'Q)-1		=					X'X			X'𝐙= 				-1			=							A*					B*																						
																								𝐙='X			Z'𝐙=																				C*					D*					
																																
where	
	
A*	=					[	X'X	-	(X'𝐙=)(𝐙='𝐙=)-1((𝐙='X	)]-1															
	
B*	=		-		[	X'X	-	(X'𝐙=)(𝐙='𝐙=)-1(𝐙='X	)]-1(X'𝐙=)(𝐙= '𝐙=)-1			
	
C*	=			-	{[	X'X	-	(X'𝐙=)(𝐙='𝐙=)-1((𝐙='X	)]-1}	
	
D*	=		{(𝐙= '𝐙=)-1(𝐙=′X)	[	X'X	-	(X'𝐙=)(𝐙='𝐙=)-1((𝐙='X	)]-1(	X'𝐙=)(𝐙= '𝐙=)-1}	
	
	Thus,	
																								
	(𝑄= '𝑄=)-1𝑄= '	=						A*					B*			[X				𝐙=]'		=						A*X'	+	B*𝐙='	
																												C*					D*																												C*X'				D*𝐙='	
																																	
	
An	additional	important	matrix	is	the	N	x	N	matrix	[(𝐙= ]Ž	)(𝜃=𝜃=])(𝐙W′𝐙=)].		Both	
matrices	can	be	formed	from	the	second-stage	regression	output.	
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The	Simplest	Cases		
	

Case	1:	A	Single	Endogenous	Regressor,	No	Intercept	
	
Suppose	the	structural	equation	has	no	intercept	and	only	one	endogenous	
regressor.	An	equivalent	way	to	describe	it	is	that	all	variables	are	defines=d	as	
deviations	from	the	sample	means.	This	is	the	easiest	possible	case.	
	
In	this	case		the	complicated	expression	for	Ω	2 reduces	to		
	
																									Ω	=		𝑠̂P)(𝑧̂′𝑧̂)-1	+		𝜃=)(𝑧̂′𝑧̂)-1ç(	𝑧̂′𝑧̌)′(𝑧̂′𝑧̂)-1	
		

A	convenient		property	of	OLS	estimation	is	that	the	sum	of	the	products	of	the	
residuals	and	the	fitted	regressors	is	zero,	i.e.	𝑧̂′𝑧̌	=	0.		Thus,	the	complicated	second	
term	entirely	vanishes	in	this	case.	In	the	one-regressor	case	we	have		

																																																Ω	=		𝑠̂P)(𝑧̂′𝑧̂)-1	and		Var(𝜃=))=	
_̂`a

bĉa
	

	

	

																																																																																	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Note	that	because	0	<	R)	<	1,	Var	(𝜃=)	must	be	greater	than	the	variance	𝜃=	reported	by	
the	second-stage	OLS	output.	

Problem	
	
																		You've	estimated	the	first-stage	regression	to	obtain	vector	𝑧̂	
																																									as	well	as	the	second-stage	regression	
	
																																										y	=		𝑧̂𝜃	+	€  with error vector   € = u + žq	
	
																						What	is	the	variance	of	the	estimated	coefficient	(𝜃=)?	
	
																																																																			Answer							
	
																																		The	estimator	for	the	variance	of	𝜃=q*	is		
	

																																																					Var	(𝜃=)	=	 _̂`a

eabca
	

																								where		
	
																								R2	is	the	R-Squared	for	the	IV	equation	
																								𝑠P∗)	is	the	adjusted	error	variance	reported	in	the	IV	equation					
																								å𝑧)is	the	sum-of-squares	of	the	endogenous	variable	
	

																								The	t-statistic	is	t	=	
g∗

√(ij(ga)
	.											
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Case	2:	One	Exogenous	and	Two	Endogenous	Regressors	
	
This	is	the	format	of	the	model	used	in	the	application	that	follows.	The	exogenous	
regressor	in	this	example	is	a	constant	serving	as	the	intercept.	
	
Define	the	following	matrices	and	vectors:	
	
		𝑄=Nx3	=				1	𝐳0𝟏		𝐳0𝟐				𝑄= '3xN	=						1	′							𝑍nNx2=	[	𝒛p𝟏			𝒛p𝟐	]				𝜃=	=			𝜃=5								𝛾q=	intercept	
																																																							𝐳0𝟏′																																															𝜃=)															
																																																							𝒛0𝟐'																																																		
	
	
where	1	is	an	Nx1	vector	of	1's	for	the	constant	term,		𝒛0𝟏,	𝒛0𝟐	are	Nx1	vectors	of	fitted	
values	for	the	two	instruments,	𝐳p𝟏,		𝐳p𝟐	are	the	associated	Nx2	residual	vectors,		𝛾q	is	
the	estimated	intercept	coefficient,	and		𝜃=	is	a	2x1	vector	of	coefficients	on	the	
instrumental	variables.	
	
Note	that	only	the	endogenous	regressor	coefficients	are		
	
																			Then			W	=		𝜎P)(𝑄=′𝑄=)-1		+		(𝑄=′𝑄=)-1𝑄′[𝑍n(θθ′)𝑍n′]𝑄=(𝑄=′𝑄=)-1	
	
which	can	be	written	as		W	=		𝜎P)(𝑄=′𝑄=)-1		+		ßß'		where	ß	=	(𝑄=′𝑄=)-1𝑍nθ	
											
		where																
																																			Q2=					1				𝑧̂55				𝑧̂)5				
																																														1				𝑧̂5)				𝑧̂))	
																																														.	.					.	.							.	.		
																																														1				𝑧̂56 			𝑧̂)6 	
	
	
																													Q2′Q2	=							1'1				1'	z05			1'	z0)					
																																														z05

]1			z05
]z05		z05
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An	Application:	Guns,	Homicides	and	Suicides	

	
This	application	is	taken	from	a	paper	available	at	www.fortunearchive.com	(scroll	to	
the	bottom	of	the	index	page	and	select	"Guns	in	America.")		
	
International	opinion—and	much	American	opinion—is	clear:		there	is	an	obvious	
causal	connection	between	the	number	of	firearms	and	the	number	of	homicides,	so	
obvious	that	obtuse	gunowners	can't	see	it.		This	has	been	demonstrated	by	data	
across	countries—countries	with	more	guns	per	capita	have	more	homicides	by	
gun;	the	U.S.	is	a	standout	on	both	per	capita	gun	numbers	and	percapita	homicides	
(particularly	if	you	exclude	very	violent	nations	from	the	data).	It	has	also	been	
demonstrated	by	data	across	states—states	with	more	guns	per	capita	appear	to	
have	more	homicides-by-gun.	This	is	what	explains	why	America	has	a	high	murder	
rate—we	Americans	just	have	too	many	guns!		
	
There	are	a	variety	of	flaws	in	this	logic.	First,		
	
													•	Correlation	does	not	prove	causation;	the	fact	that	more	guns		
																appear	to	be	associated	with	more	homicides	is	no	proof	that		
																more	guns	cause	more	homicides.		
	
Second,	homicides	by	gun	have	a	clear	socioeconomic	and		ethnic	flavor:		
	
											•			Roughly	80	percent	of	homicides	are	done	by	non-whites	to	non-whites.			
	
This	raises	the	question	of	whether	violence	among	the	poor	and	more	crime-prone	
population	is	a	major	reason	for	homicides,	not	guns.	It	also	raises	the	question	of	
whether	illegal	guns—the	most	common	guns	in	non-white	areas—are	the	source	of	
the	association	between	guns	and	homicides.			
In	addition,	there	are	a	couple	of	factoids	that	raise	questions	about	the	guns-
homicides	association.		
Here	are	two:	
	
										•		Three	percent	of	adult	gun	owners	hold	fifty	percent	of	America's	guns.	
	
										•			Between	1994	and	2015	the	population	adjusted	rates	of	both	violent		
															crimes	and	homicides	has	declined	steadily	while	the	number	of	guns			
															increased	from	192	million	in	1994	to	over	265	million	in	2015.	
	
The	first	factoid	suggests	that	if	more	guns	cause	more	homicides,	there	should	be	a	
plethora	of	murders	by	three	percent	of	gun	owners—the	"supper-gunners."		But	
there	is	no	evidence	that	those	with	more	guns	murder	more	people.	Furthermore,	if	
these	guns	are	in	safe	hands	then	only	half	of	the	gun	stock	is	"in	play"	for	homicidal	
purposes:	the	unsafe	American	gun	supply	is	only	half	of	the	recorded	number.	This	
would	take	America	out	of	the	stratosphere	of	gun	ownership.		
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The	second	factoid	simply	points	out	that	in	America	there	is	no	evidence	that	over	
the	past	25	years	more	guns	means	more	murders.	
	
I	set	out	to	look	into	the	guns-homicide	connection	using	statistical	analysis	of	data	
on	relevant	variables	in	the	51	states	(including	DC)	in	or	about	2012.	Some	of	the	
variables	used	were	exogenous	(per	capita	personal	income	in	the	state,	median	age,	
male-to-female	ratio,	degree	of	urbanization,	non-white	percentage	of	population).	
Two	variables	were	treated	as	endogenous—the	per	capita	number	of	guns	owned	
in	the	state,	and	the	per	capita	number	of	guns	reported	lost	or	stolen.		
	
Table	1	below	shows	the		results	of	regressing	state	homicide	rate	and	suicide	rate	
(per	100,000	population)	the	gun	variables.		This	is	done	by	OLS,	a	method	that	
would	be	appropriate	if	all	regressors	were	exogenous.		
	
OLS	Estimation		

	
Table	1	

																																					Ordinary	Least	Squares	Regressions	
																																																			____________Dependent	Variables___________																																																																																																															
											Independent																		HOMICIDES	per	100K							SUICIDES	per	100K	
														Variable																					Coefficient							t-Statistic					Coefficient						t-Statistic	

			Bold	face	text	shows	statistically	significant	variables	(5%)	
	
	
The	first	thing	to	note	is	that	nothing	explains	suicides.		They	follow	an	entirely	
different	pattern—if	there	is	a	pattern—than	homicides.		However,	homicides	do	
have	some	statistically	significant	regressors.	In	particular,	both	stolen	guns	and	
guns	owned	play	a	statistically	significant	role	in	explaining	homicides.		As	expected,	
stolen	guns	contribute	directly	to	homicides.	But	guns-owned	are	inverse	factors—
the	more	guns	owned	in	a	state,	the	fewer	the	homicides.	
	

Constant	 -	75.90	 -		2.13	 -	181.47	 -	1.91	
Pers.	Income	(per	capita)	 -		0.00015	 -		0.99	 -0.00062	 -	1.61	
Income	Inequality	(Gini)	 +	38.26	 +	1.69	 +	67.18	 +	1.11	
Median	Age	(Years)	 +	0.37	 +	1.14	 +	1.11	 +	1.31	
Gender	(Male/Female)	 +0.61	 +	2.32	 +	1.33	 +	1.95	
Urbanization	(percent)	 -	5.97	 -	1.27	 +	12.32	 +0	.98	
Race	(%	Black)	 +	3.66	 +	0.47	 +	3.85	 +	0.19	
Stolen	Guns		(per	100	pop)	 +	.0163	 +	3.15	 +	0.0133	 +	0.97	
Guns	Owned	(per	100	pop)	 -	0.1323	 -	2.06	 -0.0934	 -	0.56	
	 	 	 	 	

Adjusted	R2		 	0.65	 	 0.05	 	
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Clearly,	this	does	not	support	the	view	that	the	volume	of	guns	is	the	cause	of	the	
high	homicides	(and	suicides)	experienced	in	America.	But	perhaps	there	is	
endogeneity	biasing	the	results,	as	when	homicides	induce	purchase	of	fewer	or	
more	guns--more	guns	as	people	arm	for	self-defense,	or	fewer	guns	as	people	
become	more	fearful	of	gun	deaths.		So	let's	try	TSLS	estimation	to	mitigate	the	
effects	of	endogeneity.	
	
TSLS	Estimation	
	
To	do	this	we	assume	that	stolen	guns	and	guns	owned	are	endogenous	regressors	
and	we	regress	each	on	all	of	the	other	exogenous	variables.	The	results	are	
reported	in	Table	2.	

	
Table	2	

																																					Ordinary	Least	Squares	Regressions	
																																																			____________Dependent	Variables___________																																																																																																															
											Independent																	STOLEN	GUNS	per	100				GUNS	OWNED	per	100K	
														Variable																					Coefficient							t-Statistic					Coefficient						t-Statistic	

			Bold	face	text	shows	statistically	significant	variables	(5%)	
	
Stolen	guns	are	more	common	in	higher	income	states	,	in	younger	states,	and	in	
states		with	higher	proportions	of	blacks.		Guns	owned	are	driven	by	gender	(more	
males	buy	guns	than	females)	and	by	urbanization	(guns	are	more	common	in	less	
urbanized	states).		
	
Finally,	Table	3	tells	us	the	link	between	method	of	death	and	guns,	purged	of	the	
endogeneity	that	might	taint	Table	1.	The	bottom	line	is	unchanged—stolen	guns	
matter,	the	number	of	guns	doesn't—though	the	coefficient	is	now	positive.		Only	to	
the	extent	that	a	larger	stock	of	guns	allows	more	stolen	guns	is	there	a	link	between	
guns	and	homicides.	Suicides,	on	the	other	hand,	are	inexplicable	using	our	data.	
	
The	good	news	for	those	who	claim	that	guns	and	homicides	are	directly	related	is	
that	the	coefficient	on	guns-owned	is	now	(slightly)	positive,	a	sharp	contrast	with	
the	OLS	results	in	Table	1.		The	bad	news	is	that	it	is	not	statistically	significant.		
	

Constant	 +	2.14	 +	1.47	 -	104.23	 -	0.89	
Pers.	Income	(per	capita)	 +0.00002	 +	3.78	 -	0.0005		 -	1.58	
Income	Inequality	(Gini)	 +	0.72	 +	0.69	 +	96.04	 +	1.16	
Median	Age	(Years)	 -	0.05	 -	4.47	 -	0.95	 -	1.11	
Gender	(Male/Female)	 -0.01		 -	1.19	 +	1.87	 +	2.53	
Urbanization	(percent)	 +	2.00	 +	0.99	 -	45.69	 -	3.35	
Race	(%	Black)	 +0.92	 +	3.13	 +	8.80	 +	0.37	
	 	 	 	 	

Adjusted	R2		 	0.81	 	 0.85	 	
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Table	3	
																																																TSLS	Second	Stage	Regressions	
																																																			________________Dependent	Variables___________																																																																																																															
													Independent																	HOMICIDES	per	100K														SUICIDES	per	100K	
																					Variable																	Coefficient								t-Statistic							Coefficient				t-Statistic	

									t-statistics	are	corrected	for	errors	introduced	by	TSLS.	
									Bold	face	text	shows	statistically	significant	variables	(5%)	
	
	
Estimates	of	Standard	Errors	and	t-Statistics:	Direct	OLS	vs.	TSLS		
	
In	Table	4	we	compare	the	standard	errors	and	t-statistics	generated	directly	by	OLS	
estimation	of	the	equations	in	Table	3	with	those	resulting	from	correct	adjustment	
of	TSLS	estimation.	
	

					Table	4	
																																												TSLS	Second	Stage	Regressions	
																																								_______________Dependent	Variable________________________																																																																																																															
																																																																			HOMICIDES	per	100K			
									Independent																																																	OLS																																							TSLS	
											Variable															Coefficient			Std	Error			t-Statistic			Std	Error						t-Statistic	

	
As	expected,	the	standard	errors	of	the	estimated	coefficients	are	higher	with	TSLS	
than	with	OLS,	and	the	t-statistics	are	correspondingly	lower.		
	
	
	
	
	
	
	
	
	
	

	 	 	 	 	
Constant	 +								0.62	 +							0.52	 +				7.9393	 +				2.32	
Stolen	Guns	(fitted)	 +			10.09					 +					4.66	 -						2.0677	 -							0.20	
Guns	Owned	(fitted)	 		+						0.04	 +							1.70	 +						0.9453	 +						0.41	

	 	 	 	 	 	
Constant	 				0.62	 +	0.65	 +					0.94	 				0.73	 			+	0.52	
Stolen	Guns	(fitted)	 		10.09	 +	1.93	 +					5.24	 				2.17	 			+	4.66	
Guns	Owned	(fitted)	 				0.04	 +	0.02	 +					1.91	 				0.02+	 			+	1.70	
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Appendix:	Data	Set	

	
	
	
	

	

2011 2010 2010 2010 2011 2012 2010 2013 2013 2015 2010 Stolen/Lost 2013

Gun Deaths Gun Homicides Gun Suicides Population Median Income Pers. Inc. Income Ineq Gender Median Age Race-Black Urbanization Guns Guns Owned

State (per 100K) (per 100K) (per 100K) (in 100Ks) (per HH) per Capita (Gini)  Males per F (Years) (%)        (%) (per 100) (per 100)

GUN DEATHS HOMICIDES SUICIDES POPULATION MEDIAN Y PERS. INC. INEQUALITY GENDER MEDIAN AGE BLACK URBAN STOLEN GUNS GUNS OWNED

Alabama 17.6 4.41 13.19 48.027 $41,415 $23,606 0.4847 94.33 37.90 26.40% 59.00% 0.126677688 48.9

Alaska 19.8 2.24 17.56 7.227 $67,825 $33,062 0.4081 108.52 33.80 3.40% 66.00% 0.09920882 61.7

Arizona 14.1 3.53 10.57 64.825 $46,709 $25,715 0.4713 98.74 35.90 4.20% 89.80% 0.083779341 32.3

Arkansas 16.8 4.39 12.41 29.380 $38,758 $22,883 0.4719 96.45 37.40 15.50% 56.20% 0.139245379 57.9

California 7.7 3.25 4.45 376.919 $57,287 $30,441 0.4899 98.83 35.20 5.90% 95.20% 0.028226215 20.1

Colorado 11.5 1.51 9.99 51.168 $55,387 $32,357 0.4586 100.48 36.10 4.00% 86.20% 0.050988939 34.3

Connecticut 4.4 2.71 1.69 35.807 $65,753 $39,373 0.4945 94.83 40.00 10.30% 88.00% 0.027201317 16.6

Delaware 10.3 3.09 7.21 9.071 $58,814 $30,488 0.4522 93.94 38.80 21.60% 83.30% 0.037921588 5.2

D.C 18.44 12.46 5.98 6.180 $63,124 $45,877 0.5420 89.52 33.80 48.90% 100.00% 1.185120939 25.9

Florida 11.9 3.51 8.39 190.575 $44,299 $26,582 0.4852 95.60 40.70 16.10% 91.20% 0.065963386 32.5

Georgia 12.6 3.93 8.67 98.152 $46,007 $25,615 0.4813 95.38 35.30 30.90% 75.10% 0.1314898 31.6

Hawaii 2.6 0.07 2.53 13.748 $61,821 $29,736 0.4420 100.32 38.60 2.00% 91.90% 0.010765124 45.1

Idaho 14.1 1.14 12.96 15.850 $43,341 $23,938 0.4503 100.39 34.60 0.60% 70.60% 0.068581091 56.9

Illinois 8.6 2.93 5.67 128.693 $53,234 $30,417 0.4810 96.24 36.60 14.30% 88.50% 0.025658047 26.2

Indiana 13 3.29 9.71 65.169 $46,438 $25,140 0.4527 96.83 37.00 9.20% 72.40% 0.073255442 33.8

Iowa 8 0.71 7.29 30.623 $49,427 $29,507 0.4729 95.71 37.13 14.53% 87.67% 0.146248016 29.4

Kansas 11.4 2.78 8.62 28.712 $48,964 $29,485 0.4731 95.50 37.17 14.57% 88.52% 0.146578326 28.6

Kentucky 13.7 2.36 11.34 43.694 $41,141 $29,463 0.4733 95.29 37.21 14.61% 89.37% 0.146908635 27.9

Louisiana 19.3 10.16 9.14 45.748 $41,734 $29,441 0.4735 95.09 37.26 14.64% 90.22% 0.147238945 27.1

Maine 10.9 0.9 10.00 13.282 $46,033 $29,419 0.4738 94.88 37.30 14.68% 91.06% 0.147569254 26.4

Maryland 9.7 4.7 5.00 58.283 $70,004 $29,397 0.4740 94.67 37.34 14.72% 91.91% 0.147899563 25.7

Massachusetts 3.1 2.02 1.08 65.875 $62,859 $29,376 0.4742 94.47 37.39 14.76% 92.76% 0.148229873 24.9

Michigan 12 5.06 6.94 98.762 $45,981 $29,354 0.4745 94.26 37.43 14.80% 93.61% 0.148560182 24.2

Minnesota 7.6 0.82 6.78 53.449 $56,954 $29,332 0.4747 94.05 37.47 14.84% 94.45% 0.148890492 23.5

Mississippi 17.8 7.46 10.34 29.785 $36,919 $29,310 0.4749 93.85 37.51 14.88% 95.30% 0.149220801 22.7

Missouri 14.4 4.64 9.76 60.107 $45,247 $29,288 0.4751 93.64 37.56 14.91% 96.15% 0.14955111 22.0

Montana 16.7 0.76 15.94 9.982 $44,222 $29,266 0.4754 93.43 37.60 14.95% 97.00% 0.14988142 21.2

Nebraska 9 2.5 6.50 18.426 $50,296 $29,244 0.4756 93.23 37.64 14.99% 97.84% 0.150211729 20.5

Nevada 13.8 3.07 10.73 27.233 $48,927 $29,222 0.4758 93.02 37.69 15.03% 98.69% 0.150542039 19.8
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New Hampshire 6.4 0.53 5.87 13.182 $62,647 $29,200 0.4761 92.81 37.73

New Jersey 5.7 3.07 2.63 88.212 $67,458 $29,179 0.4763 92.61 37.77

New Mexico 15.5 2.98 12.52 20.822 $41,963 $29,157 0.4765 92.40 37.82

New York 4.2 4.12 0.08 194.652 $55,246 $29,135 0.4767 92.19 37.86

North Carolina 12.1 3.87 8.23 96.564 $43,916 $29,113 0.4770 91.99 37.90

North Dakota 11.8 0.93 10.87 6.839 $51,704 $29,091 0.4772 91.78 37.95

Ohio 11 3.54 7.46 115.450 $45,749 $29,069 0.4774 91.57 37.99

Oklahoma 16.5 3.64 12.86 37.915 $43,225 $29,047 0.4776 91.37 38.03

Oregon 11 1.05 9.95 38.719 $46,816 $29,025 0.4779 91.16 38.08

Pennsylvania 11.2 3.97 7.23 127.429 $50,228 $29,003 0.4781 90.95 38.12

Rhode Island 5.3 0.57 4.73 10.513 $53,636 $28,982 0.4783 90.75 38.16

South Carolina 15.2 5.41 9.79 46.792 $42,367 $28,960 0.4786 90.54 38.21

South Dakota 10 0.68 9.32 8.241 $48,321 $28,938 0.4788 90.33 38.25

Tennessee 15.4 3.92 11.48 64.034 $41,693 $28,916 0.4790 90.13 38.29

Texas 10.6 2.91 7.69 256.747 $49,392 $28,894 0.4792 89.92 38.34

Utah 12.6 0.97 11.63 28.172 $55,869 $28,872 0.4795 89.71 38.38

Vermont 9.2 0.75 8.45 6.264 $52,776 $28,850 0.4797 89.51 38.42

Virginia 10.2 2.58 7.62 80.966 $61,882 $28,828 0.4799 89.30 38.47

Washington 8.7 1.25 7.45 68.300 $56,835 $28,806 0.4801 89.09 38.51

West Virginia 14.3 2.87 11.43 18.554 $38,482 $28,785 0.4804 88.89 38.55

Wisconsin 9.7 1.47 8.23 57.118 $50,395 $28,763 0.4806 88.68 38.60

Wyoming 16 2.01 13.99 5.636 $56,322 $28,741 0.4808 88.47 38.64
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																																																			Appendix:	Excel	Spreadsheets	
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